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Abstract
We discuss the hyperfine shifts of the positronium levels in a relativistic
framework, starting from a two-fermion wave equation where, in addition to
the Coulomb potential, the magnetic interaction between spins is described by
a Breit term. We write the system of four first-order differential equations
describing this model. We discuss its mathematical features, mainly in
relation to possible singularities that may appear at finite values of the radial
coordinate. We solve the boundary value problems both in the singular and non-
singular cases and we develop a perturbation scheme, well suited for numerical
computations, that allows us to calculate the hyperfine shifts for any level,
according to well-established physical arguments that the Breit term must be
treated at the first perturbative order. We discuss our results, comparing them
with the corresponding values obtained from semi-classical expansions.

PACS numbers: 03.65.Pm, 03.65.Ge

1. Introduction

The relativistic description of the fine structure of the hydrogen atom levels was first proposed
by Darwin [1] in a semi-classical treatment of the Dirac equation. This was immediately
followed by the Breit proposal of a two-body relativistic equation [2] that, in addition to the
Coulomb potential, included a quasi-static magnetic term where the velocities were substituted
by the Dirac −→α -matrices according to a proposal of Heisenberg. Shortly later Fermi calculated
the spectrum of a Dirac electron interacting with a Pauli nucleus and deduced the values of
nuclear magnetic momenta from the measured hyperfine splitting [3], using the Schrödinger
non-relativistic wavefunctions to calculate the averages near the origin. In fact, following a
Pauli suggestion, also the Breit paper contained a semi-classical expansion along the lines of
the Darwin work, but eventually Breit himself was doubtful about the actual predictivity of his
equation and two years later he reached the conclusion that the Coulomb interaction should be
treated exactly, while the magnetic term had to be considered as a first-order self-consistent
perturbation, so that only its diagonal matrix elements on the exact Coulomb eigenstates were
brought to bear. Since then, major achievements were obtained by Pirenne [4], Berestetski
and Landau [5]. Still using the Breit semi-classical approximation and the non-relativistic
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Coulomb wavefunctions, they were able to produce analytical approximations for the shifts of
the parapositronium levels and for the ground state of the orthopositronium. In their approach
they also included the annihilation term. In the early 1950s, the appearance of the Schwinger
[6] and of the Bethe–Salpeter equations [7, 8] made it possible to calculate up to the order
α5 (α = fine structure constant) the shifts of the first excited levels of the positronium, by
accounting for the effects of one and two virtual photons, self-energy and vacuum polarization,
but still keeping the semi-classical perturbative scheme [9, 10]. Later, in the 1970s, due to the
great improvement in the experimental analysis of the atomic spectra, [11], to the qualitative
changes in the mathematical and physical framework of symmetries and mainly to the new
ideas of hadrons as composed by quarks, interest in the bound states and for the relativistic
wave equations arose again and has never weakened since [12–24]. The challenge of the
completely relativistic calculation of the hyperfine splitting was again pushed on foreground
and various models for two spin- 1

2 interacting particles were proposed, with special attention
to the positronium that constituted an ideal system both from a theoretical and an experimental
point of view: it appears, however, that the use of the semi-classical expansion and non-
relativistic Coulomb wavefunctions as a starting point has maintained his role. Even in a later
paper [13], where a non-perturbative treatment is claimed, the solutions of the Breit equation
are calculated analytically but expanding the equation up to the second order in α. This
latter procedure, in particular, may be assumed somewhat safely in atomic physics, where the
velocities are of the same order of the fine structure constant, so that the expansion in α in fact
corresponds to a semi-classical approximation. It becomes less and less justified in view of an
extension of the method to quark bound states (see, e.g., [25, 26]), where an expansion in the
coupling constant is not allowed and where it would be worth dealing from the very beginning
with relativistic states.

In the present paper, we fill this old gap and present a completely relativistic treatment
of the hyperfine splitting based on the Breit approach, providing an effective method for its
computation for any spectral level. We thus analyse an approximate interaction within the
framework of an exact kinematics. It is rather evident that analytic results will be possible
only for the initial steps of our treatment, i.e. for establishing the system of equations to be
discussed and their reduction due to conserved quantities. Analytic expressions will also
be available when looking for series or asymptotic solutions, but finding the spectrum will
necessarily be achieved by numerical methods. Moreover we shall omit from our treatment
the annihilation term.

The starting point is thus the two-fermion relativistic wave equation we presented in
[27]. In that paper, using a canonical reduction of the relativistic kinematics of the two-body
problem, we introduced Lorentz-invariant interactions dependent upon the reduced coordinates
and gave a solution of the relative time problem. We then quantized the model assuming a
fermion nature for both of the two particles and deduced a completely Lorentz covariant
internal dynamics, which was reduced by separating the radial part in a multipole scheme
exploiting the conservations of angular momentum and parity. A further reduction of the
radial equations produced a final linear system of order four containing the spectral parameter
to be determined. We proved that the Dirac and the non-relativistic limits were recovered and
compared our model with other existing models, [14, 17–19], finding a general agreement.
The complete spectral curves from Dirac to positronium for pure Coulomb interaction were
plotted for ground and higher states and the crossing of terms inferred in [17] was precised
and made concrete. In that paper we also looked at the possibility of using the eigenfunctions
of the degenerate singlet–triplet ground states of the positronium to set up a direct perturbative
calculation of the hyperfine splitting, using the usual perturbative terms for the magnetic
interaction: the answer was negative even for the ground state, since the behaviour of the
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relativistic wavefunctions in the origin was not compatible with the magnetic interaction
terms obtained by the semiclassical approximation.

In order to investigate the hyperfine structure, we shall therefore add to our pure Coulomb
wave equation a Breit term in a Lorentz covariant way. The radial reduction of the problem
is again done by using the still holding conservations of angular momentum and parity and
here also the final wave equation reduces to a fourth-order linear system. Unfortunately the
situation is now not as nice as in the pure Coulomb case, since a singularity of the wave
equation appears at finite positive values of the radial coordinate. This occurrence had already
been notified (see [28]) and, to our knowledge, has prevented up to date any correct integration
attempt. However, a careful investigation shows that the behaviour of the system is not so
bad. Indeed the singularity can be ‘bridged’ and the spectrum can be determined although, as
previously said, only the first perturbative order in the Breit interaction makes sense and higher
order corrections should be dealt with using the QED [24]. Therefore we are going to present
a perturbative approach that allows the complete numerical calculation of the contribution to
the shift of any level of the para- and the orthopositronium due to the Breit term. We shall
show that in almost any case the presence of the additional singularity can be avoided: only for
the levels with odd parity and angular momentum j = 0 this is impossible and the analysis has
to be refined. However, in order to provide numerical evidence of the correctness of the Breit
argument concerning the perturbative nature of the magnetic interaction, we further investigate
the singular cases connected to the ground states. A numerical approach based on a different
starting point and on Padé approximation techniques has been successful in calculating the
shifts of the parapositronium singlets to the order α4 [29]. The principal merit of our scheme
from a numerical point of view is that we are able to obtain the results uniquely by means of
the numerical values of spectral levels, without any need to use the eigenfunctions in order
to calculate the matrix elements for the Breit term: in the full relativistic case this leads to a
faster and more precise approach for finding the spectrum, especially for the orthopositronium
triplets. When comparing our results to the values of the hyperfine levels computed in the
semi-classical scheme and expressed in terms of simple fractions of powers of α2, [10, 30],
we find an excellent agreement up to the order α4. This is rather remarkable, since the
pure Coulomb contribution—where the correct kinematics and the recoil effects are exactly
accounted for—and the magnetic perturbative terms are here separately different with respect
to the corresponding semi-classical contributions (more details are given in section 4). We
want to stress that, apart from some technical obstacles, our general method has a great
conceptual simplicity: besides its applications to any excited level of electromagnetic bound
states with components of arbitrary mass ratio, we believe that it should also be relevant for
models of different nature, for which non-relativistic calculations are less reliable.

The paper is organized as follows. In section 2, we briefly recall the derivation of the
wave equation for the two-fermion system with a general radial interaction and present the
new equation with the additional Breit term together with its reduction that defines the spectral
problem to be solved. The procedure is completely parallel to that of the pure Coulomb
interaction explained in the previous paper [27], which we refer to for detailed expressions, as,
for instance, the explicit form of the even and odd state vectors. The nature of the mathematical
problem and the numerical methods we have used for its solution are explained in section 3.
Here we also investigate the possible presence of singularities at a non-vanishing finite value
of the radial coordinate and we comment on their properties. Finally, in section 4, we present
the results and discuss them. A revisitation of the perturbative expansion as we have used it
in our computations (up to second order in the proof, but evidently valid at any order) is given
in the appendix.

In the following we use units such that h̄ = c = 1.
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2. The system for the Coulomb and Breit interaction

In the paper [27] we have described the method for obtaining a Lorentz covariant wave equation
for two fermions interacting by means of a scalar potential. Obviously, we cannot reproduce
the derivation here and have to refer to [27] for details. It is, however, necessary to recall the
main definitions in order to have a minimum of self-consistency of the treatment.

2.1. The canonical variables

Denote by x
µ

(i) and p
µ

(i) the Minkowski coordinates and the momenta of two pointlike fermions
with masses mi, i = 1, 2. Define the tensor

εµ
a (P ) = ηµ

a − Pa

[
P µ + η

µ

0

√
P 2

]
√

P 2[P0 +
√

P 2]
, ε

µ

0 (P ) = P µ/
√

P 2 (2.1)

where η is the Lorentz metric and P µ = p
µ

(1) + p
µ

(2) is the total momentum. It satisfies the
identities

ηµνε
µ
α (P )εν

β(P ) = ηαβ, ηαβεµ
α (P )εν

β(P ) = ηµν (2.2)

and therefore it represents a Lorentz transformation to the
−→
P = 0 reference frame. We can

use (2.1) for the construction of a canonical transformation to the variables

Zµ = Xµ +
εabcPaη

µ

b Lc√
P 2[P0 +

√
P 2]

+
ε

µ
a√
P 2

(qar̆ − raq̆) +
P µ

P 2
q̆ r̆

q̆ = ε
µ

0 qµ, r̆ = ε
µ

0 rµ, qa = εµ
a qµ, ra = εµ

a rµ

(2.3)

where

Xµ = 1
2

(
x

µ

(1) + x
µ

(2)

)
, rµ = x

µ

(1) − x
µ

(2), qµ = 1
2

(
p

µ

(1) − p
µ

(2)

)
. (2.4)

Both ra and qa are Wigner vectors of spin one, as well as Za is a Newton–Wigner position
vector for a particle with angular momentum La = εabcrbqc. In terms of (2.3), the two-particle
mass shell conditions p2

(i) = m2
i can be put into the form(

qaqa + m2
1

)1/2
+

(
qaqa + m2

2

)1/2 = λ, λq̆ = 1
2

(
m2

1 − m2
2

)
, (2.5)

where λ =
√

P 2 while the variable q̆ can be fixed and generates a canonical reduction of the
phase space. Its conjugate coordinate, namely the relative time coordinate r̆ , is cyclic and
becomes a kind of a gauge function that is chosen a posteriori in order to recover the complete
Minkowski description for each of the two particles. For instance, a useful choice could be
r̆ = 0, although there is no necessity of requiring such a condition. It is now straightforward
introducing a Lorentz covariant interaction by changing the mass shell condition (2.5) with
the addition of a scalar potential depending upon the Lorentz invariant relative separation
r = (rara)

1/2. Thus a relativistic two-body system interacting by means of a potential V (r) is
described by (2.5) where λ will be substituted by h(r) = λ − V (r).

2.2. The two-fermion quantum system

Let us now quantize equation (2.5) assuming that both particles are fermions. In order
to determine the structure of the wave equation, it is sufficient to consider the case of
two free fermions, since the interaction will then be introduced in the way previously
described. The two-particle wavefunction is simply the tensor product of the two single-
particle wavefunctions, and must therefore satisfy the two separate Dirac equations determined
by the operators D1 = (

1
2Pµ + qµ

)
γ

µ

(1) − m1 and D2 = (
1
2Pµ − qµ

)
γ

µ

(2) − m2, where we adopt
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the notation γ
µ

(1) = γ µ⊗I4, γ
µ

(2) = I4 ⊗γ µ and where I4 is the unity matrix in four dimensions.
Introducing the new set of γ -matrices γ̆ ≡ γ̆ (P ) = ε

µ

0 (P )γµ, γa ≡ γa(P ) = ε
µ
a γµ and using

the canonical operators corresponding to the variables (2.3), we easily find

λ = qa

(
γ̆(1)γ(1)a − γ̆(2)γ(2)a

)
+ γ̆(1)m1 + γ̆(2)m2, λq̆ = 1

2

(
m2

1 − m2
2

)
. (2.6)

System (2.6) has exactly the same content as the initial system of the two independent Dirac
equations. However, put in this form, we see that the variable q̆ remains fixed, in a complete
agreement with the classical canonical reduction. The cyclic character of r̆ is also evident from
the Lorentz scalar identity for the phase of plane waves p(1)

µx(1)µ +p(2)
µx(2)µ = P µZµ−qara .

Moreover the definition of γ̆ , γa is actually a unitary transformation on the γ µ 4-vector. Hence,
as long as P is conserved, the matrices can be represented by the usual γ matrices. The first
of equations (2.6) is thus the Lorentz-invariant equation for the two-fermion free system. Its
16 eigenvalues are immediately calculated, yielding the expected four singular values

λ = ±(
qaqa + m2

1

)1/2 ± (
qaqa + m2

2

)1/2
, ±(

qaqa + m2
1

)1/2 ∓ (
qaqa + m2

2

)1/2
, (2.7)

each singular value having multiplicity four.
The equation for the interacting system is simply obtained by substituting λ with

h(r) = λ − V (r) in the first of the (2.6) equations. For future discussions, we find it
useful to introduce the mass parameters M = m1 + m2, µ = m1 − m2, ρ = µ/M and to
reorder the basis of the states making a linear transformation on the tensor product of the two
spinor spaces such that the system at rest is diagonalized and the four singular values (2.7)
are put in the order M,−M,−µ and µ. We then make a further linear transformation such
that, in each four-dimensional eigenspace corresponding to the above energy eigenvalues, the
square and the third component of the total spin S = I4 ⊗ σ + σ ⊗ I4 (where σ is the Dirac
spin) are also diagonalized and ordered with the triplet always following the singlet.

We finally recall that the global parity transformation is given by the product of orbital
and internal parity transformations. In our picture the internal parity is γ̆ ⊗ γ̆ = diag(I8,−I8).
It can be verified that the global angular momentum J = L + S and the parity are conserved,
so that, together with λ, they provide a classification of the states of the global symmetry.

2.3. The radial equations

In the basis we have chosen, the free Hamiltonian operator H0 is a 16 × 16 matrix of the form

H0 =
(
JM H0

H0 Jµ

)
, (2.8)

whereJ
 = 
 diag(I4,−I4),
 = M,µ andH0 is a 8×8 matrix whose elements are spherical
differential operators (see [27] for the explicit form). We next construct the ‘even’ and ‘odd’
states �± with assigned angular momentum (j,m) and given parity (−)j or (−)j+1, whose
16 components are collected in 4 groups indexed by the eigenvalues ±
 of the free system at
rest:

�± = t
(
�

(M)
± , �

(−M)
± , �

(−µ)
± , �

(µ)
±

)
. (2.9)

In each group the components are singlet–triplet ordered, namely

�
(
)
± = t

(
ψ

(
)
±,0, ψ

(
)
±,1+

, ψ
(
)
±,10

, ψ
(
)
±,1−

)
, (2.10)

where the subscript ‘0’ refers to the singlet component, while ‘1+, 10, 1−’ denote the triplet
components. The explicit expressions have been determined using the standard algorithms
of the composition of angular momenta by means of Clebsch–Gordan coefficients and are
therefore linear combinations of spherical harmonics. They are fully reported in [27].
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By applying the Hamiltonian operator (2.8) to the states (2.9) we obtain a system of
radial differential equations by requiring the vanishing of the coefficients of the different
spherical harmonics in each component of the resulting vector. Indeed we get a large number
of differential equations (e.g. 34 when starting with � = �+ ), but of course, as one should
expect, only eight of them are independent for each state with definite parity. Moreover a
closer look at them shows that four of these eight equations are algebraic relations that can
be used, by an appropriate choice of the unknown functions, to obtain a system of only four
differential equation for each of the two state vectors �+ and �−. Finally, adding a Lorentz
invariant interaction as specified in item (a), the fourth-order system reads

dY (r)

dr
+ MY (r) = 0, (2.11)

where Y (r) = t(y1(r), y2(r), y3(r), y4(r)) and M is a matrix with general structure

M =




0 E(r) F (r) 0

E(r)
1

r
0 −F(r)

G(r) 0
2

r
E(r)

0 −G(r) E(r)
1

r




. (2.12)

The explicit expressions of E(r), F (r) and G(r) for the even case are the following ones,

E(r) =
√

j (j + 1)µ

rh(r)
, F (r) = µ2 − h2(r)

2h(r)
,

G(r) = h(r)

2

(
1 − r2M2 + 4j (j + 1)

r2h2(r)

) (2.13)

and they specialize to the Coulomb interaction when h(r) = λ+α/r, α being the fine structure
constant.

As explained in [27], the odd coefficients are obtained from the previous ones by a parity
transformation, whose action simply results in the change M → −µ and µ → −M . In
[27], it has also been shown how the Dirac and the non-relativistic limits are recovered from
(2.12). We finally observe that for E(r) = 0 (e.g. for j = 0 or for µ = 0 in the even
case) the fourth-order system splits into separate second-order subsystems, making it easier
the numerical solution of the spectral problem. In the general case, however, the complete
fourth-order system has to be considered.

2.4. The addition of the Breit term

The spin–spin interaction can be described by introducing a Breit term, in addition to the
Coulomb interaction, in the relation (2.6) that becomes

λ +
α

r

[
1 − 1

2

(
γ̆(1)γ(1)aγ̆(2)γ(2)a +

(
γ̆(1)γ(1)a

ra

r

)(
γ̆(2)γ(2)b

rb

r

))]

= qa

(
γ̆(1)γ(1)a − γ̆(2)γ(2)a

)
+ γ̆(1)m1 + γ̆(2)m2. (2.14)

The Hamiltonian matrix must be modified with respect to (2.8) in order to account for the
presence of the additional γ -matrices. This modification as well as the change of the basis are
straightforward. The angular momentum and parity are conserved and the radial equations
are again deduced by applying the new Hamiltonian to the states �±, as in the pure Coulomb
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case. The general features of the systems of radial equations are also preserved and the final
result is again a fourth-order linear system. In the even case and with h(r) = λ + α/r , the
matrix B of this system reads

B =




0 E(r) F (r) 0

Eε(r)
1

r
0 Fε(r)

G1,ε(r) 0
2

r
Eε(r)

0 G2,ε(r) E(r)
1

r




(2.15)

where E(r) and F(r) are given in (2.13). The remaining matrix elements read

Eε(r) =
√

j (j + 1)µ

rh(r) − 2αε
, Fε(r) = (h2(r) − µ2)r2 − (2αε)2

2r(rh(r) − 2αε)

G1,ε(r) = h(r)

2
+

4αε +
4j (j + 1)

2αε − rh(r)
+

r2M2

4αε − rh(r)

2r

G2,ε(r) = 2j (j + 1)

r2h(r)
+

4α2ε2 + (−h(r)2 + M2)r2

2r(rh(r) − 2αε)
.

(2.16)

Again the matrix of the odd system is obtained by changing M → −µ and µ → −M . It
is also immediate to verify that for ε = 0 (2.15) reduces to (2.12).

Some remarks are in order. In the first place, we observe that in the matrix (2.15) we have
introduced a parameter ε, not present in (2.14) and reproducing the latter for the ε = 1/2.
We shall see in the following that an appropriate use of this parameter permits the calculation
of the first perturbative terms in the Breit interaction in a way that is numerically much more
efficient than the usual computations by means of the eigenfunctions. Secondly in (2.14)
and therefore in the system produced by (2.15) no anomalous magnetic moment is present.
This absence would constitute a drawback for the calculation of the hyperfine structure of the
hydrogen atom, but remains an acceptable approximation for the positronium, which is the
only case we are going to consider later on. Finally, in the even and odd systems describing
the positronium, we will let µ = 0 and M = 2me, where me is the electron mass.

3. The numerical treatment of the Breit interaction

We now discuss some general properties of the equations for the positronium with a particular
attention to the possible presence of singularities other than the origin and the infinity. We find
it useful to introduce the new dimensionless independent variable x and the new eigenvalue w

as follows:

x = mer, w =
(

me

2
α2

)−1

(λ − 2me). (3.1)

The value of the fine structure constant has been assumed as α = 0.007 297 372 568, [31].
In the following we distinguish the discussion of the even case, which develops essentially
according to the classical ODE theory [32], from the odd case, that poses some new problems.

3.1. The even case

We begin from the case with even parity. From (2.15) we see that B12 = B21 = B34 = B43 = 0
when µ = 0. This means that the fourth-order system generated by (2.15) decouples into
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two second-order systems for the unknown functions (y1(x), y3(x)) and (y2(x), y4(x)) that,
in turn, can be reduced to two second-order differential equations for y1(x) and y2(x). It has
also been shown in [27] that for j = 0 only the system for (y1(x), y3(x)) makes sense, while
for j > 0 both systems contribute to determining the levels. The first of these two equations,
introducing the unknown function u(x) defined by y1(x) = [(4 + α2w)x + 2α]1/2x−3/2u(x),
reads

d2

dx2
u(x) +

[
− 8αε

(4 + α2w)x − 2α(4ε − 1)
− 3α2

((4 + α2w)x + 2α)2x2
− 1

16x2

×(−α2w(8 + α2w)x2 − 4α(4 + α2w)(2ε + 1)x − 4α2(4ε + 1) + 16j (j + 1))

− 4αεj (j + 1)

((4 + α2w)x − 2α(2ε − 1))x2

]
u(x) = 0 (3.2)

It can be seen that, in addition to the usual singularities in the origin and at infinity, the equation
presents a new singularity at the point x = 2α(4ε − 1)/(α2w + 4), which assumes finite
positive values for ε > 1/4. Although we shall show that solutions exist also for ε > 1/4—in
fact we shall give an explicit solution for ε = 1/2, in carrying out our perturbative program we
can avoid this singularity, as well as almost all those we shall encounter in later developments.
Indeed, according to the perturbative approach we are going to explain below—and whose
proof is given in appendix A, it is sufficient to solve the equation for values ε < 1/4. There
is, however, one instance in the case with odd parity where the singularity must be explicitly
taken into account.

If y2(x) = [(4 + α2w)x + 2α(2ε + 1)]1/2x−3/2z(x), the second equation of the even case
in z(x) is

d2

dx2
z(x) +

[
− 8αε

(4 + α2w)x + 2α(1 − 2ε)
− 3α2(2ε + 1)2

((4 + α2w)x + 2α(2ε + 1))2x2
− 1

16x2

×(−α2w(8 + α2w)x2 − 4α(4 + α2w)(2ε + 1)x − 4(2ε + 1)2α2 + 16j (j + 1))

− 4αεj (j + 1)

((4 + α2w)x + 2α)x2
+

2α(2ε + 1)

((4 + α2w)x + 2α(2ε + 1))x2

]
z(x) = 0. (3.3)

This equation develops a new singularity at x = 2α(2ε − 1)/(4 + α2w), which assumes
positive values for ε > 1/2. This new singularity is therefore not effective for the same
reasons explained above. It would be such also when considering the Breit term as non-
perturbative, and it would only act through a modification of the singularity in the origin.

The boundary value problem posed by (3.2) and (3.3) for sufficiently small values of ε,
namely without the additional singularity, is very classical. Both the boundary points, the origin
and the infinity, are singular and what we have to do for starting the numerical procedure is to
determine the initial conditions in the neighbourhood of those points by looking for analytic
approximations of the solutions in the form of series or asymptotic expansions respectively.
We then apply the double shooting method in order to determine the value of the spectral
parameter with the desired accuracy. As a matter of fact, both the series and the asymptotic
expansions produce two linearly independent solutions, but in each case only one solution
can be accepted: we are thus in the so-called limit point case of the Weyl classification
of the boundary value problems [32] and therefore there is no ambiguity in choosing the
appropriate solution for giving the initial conditions and starting the numerical integration,
once the spectral parameter has been assigned a numerical value that will be adjusted in the
successive integrations until when the two solutions coming from zero and infinity, as well as
their derivatives, match within the required accuracy. This is actually the spectral condition
that simply reduces to checking the equality of logarithmic derivatives at a chosen crossing
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point, whose location is immaterial for the result. The regular series solutions for the first and
second equations of the even case are of the form yi(x) = Aix

ρi Si(x), i = 1, 2, where Ai are
integration constants, Si(x) are power series in x with the zeroth-order term equal to unity and
ρi are the positive indices

ρ1 = 1

2
+

1

2(1 − 2ε)
[(1 − 2ε)2(4 − α2(4ε + 1)) + 4(1 − 2ε)j (j + 1)]1/2

ρ2 = 1

2
+

1

2
[4(1 + 2ε)j (j + 1) − (1 + 2ε)2α2]1/2.

(3.4)

The asymptotic solutions for the two equations are of the form yi(x) = Bi exp[−κix]xνi Ti(x),

i = 1, 2, where Bi are again integration constants, Ti(x) are power series in 1/x with zeroth-
order term equal to unity, while the two positive numbers κi and the two indices νi coincide
for both equations and are equal to κ and ν, where

κ = 1

4

√
−w(α2w + 8), ν = α2w(8 + α2w)(2ε + 1) + 16

2(4 + α2w)
√

−w(8 + α2w)
. (3.5)

We finally remark that only the first terms of the series and asymptotic expansions have been
determined analytically. The following ones have been calculated by numerical codes, and
the number of terms to be taken has been chosen according to the following criterion: in the
point where the initial conditions for the numerical integrations were assigned the result of the
substitution of the solution into the differential equation divided by the solution itself had to
be less than 10−15. We also remark that tests have been made also for the arithmetic precision
of the calculations and the number of meaningful figures has always been kept sufficiently
high.

Let us now discuss the solution of equation (3.2) for the even ground state, j = 0, with
ε = 1/2, that presents a singularity at the positive point xs = 2α/(4 + α2w). We can study
the series solutions in xs and realize that this singular point is in the case of the limit cycle
of the Weyl classification [32], independently of the value of w in the physical domain. This
means that in the neighbourhood of xs the equation admits two finite solutions that can be
used for matching the solution and its derivative coming from the origin to the solution and
the corresponding derivative coming from infinity, forming therefore what in mathematics is
referred to as a ‘classical solution’ of the differential equation. Procedures of this type and also
with more elaborate matching conditions have been occasionally considered, see e.g. [33], but
usually more as an investigation of mathematical possibilities, than under the real necessity of
solving a specific problem. The first terms of the solution in the neighbourhood of xs are

ys(x) = A(x − xs)

(
1 +

2α(x − xs)

α2w + 4

)
+ B

(
1 +

4α(x − xs) ln(|x − xs |)
α2w + 4

)
(3.6)

The index in the origin is ρ = 1
2 (1 +

√
4 − 3α2), while the parameters for the asymptotic

solution are those given in (3.5) with ε = 1/2. The results will be discussed in the next
section.

3.2. The odd case

From the remarks following (2.15), we see that the matrix for the odd system is obtained by
substituting M = 0 and µ = −2me in (2.15). In the dimensionless variables (3.1), the explicit
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expression of the system we get is

d

dx
y1(x) − 2

√
j (j + 1)

rh(x)
y2(x) +

1

2

(4 − h2(x))

h(x)
y3(x) = 0

d

dx
y2(x) − 2

√
j (j + 1)y1(x)

xh(x) − 2αε
+

1

x
y2(x) +

1

2

(−4α2ε2 + (h2(x) − 4)x2)y4(x)

x(xh(x) − 2αε)
= 0

d

dx
y3(x) +

1

2

(
h(x) +

1

x

(
4αε +

4j (j + 1)

2αε − xh(x)

))
y1(x) +

2

x
y3(x) − 2

√
j (j + 1)

xh(x) − 2αε
y4(x) = 0

d

dx
y4(x) +

1

2

(
4j (j + 1)

x2h(x)
+

4α2ε2 − x2h2(x)

x(xh(x) − 2αε)

)
y2(x) − 2

√
j (j + 1)y3(x)

xh(x)
+

1

x
y4(x) = 0

(3.7)

where h(x) = 2+α2w/2+α/x. The system decouples only for j = 0 so that, for the moment,
we will assume j > 0 (remark that the triplet ground state has j = 1) .

A superficial check of the coefficients shows the presence of an irrelevant singularity at
positive values of x for ε > 1/2. The situation, however, is not so simple and there actually
exists a further hidden singularity that reveals itself when trying to integrate numerically the
system in a direct way. This unexpected singularity becomes manifest when deducing the
fourth-order differential equation equivalent to the system (3.7). Both the partial and the final
results when obtaining this equation are very cumbersome: the final analytic expression has
been calculated and managed only by means of a systematic use of computer algebra and
cannot be reported here. We simply give the steps of the method we have followed to get
the equation and that in mathematics is known as the prolongation method. First we isolate
y2(x) from the first equation and y4(x) from the third; we then substitute y2(x), its derivative
and y4(x) into the second equation, obtaining a second order equation in y1(x) where y3(x)

and its first derivative only appear. We then substitute y4(x), its derivative and y2(x) into
the fourth equation, obtaining a second-order equation in y3(x) where y1(x) and its first
derivative only appear. We next consider the prolongations of this system: this means that
we differentiate these two second-order equations and substitute the second-order derivatives
obtained by the second-order equation themselves. The third-order equation for y1(x), thus,
contains y3(x) and its first derivative only. We differentiate once more this equation and finally
from this, the two third-order and the two second-order equations we can eliminate y3(x) and
its first, second and third derivatives, finally obtaining a fourth-order differential equation
for y1(x).

In the denominator of the coefficients of the fourth-order equation we find a factor
responsible for the appearance of the new singularity given by a root of the corresponding
equation:

−(α2w + 4)(16 + α2w(ε4α2 + 1)(α2w + 8))x3 − 2α(ε4α4w(α2w + 8)(3 + 2ε)

− (α2w + 4)2(2ε − 3) + 32ε4α2)x2 + 4α2(−ε4(4ε + 3)α2 − 3 − 4ε(ε2 − ε − 1)

+ 4ε4j (j + 1))(α2w + 4)x + 8α3(4ε4j (j + 1) − (2ε + 1)(2ε − 1)2 − ε4(2ε + 1)α2) = 0.

(3.8)

For the typical values j = 1 and w = −0.5 it has a solution x > 0 for ε � 0.36014. Here also
we stress that the presence of this singularity does not affect the perturbative approach to the
hyperfine interaction, but must be considered if one is willing to integrate the odd equation as
it stands.

We have solved the fourth-order equation for small enough values of ε—so as to prevent
the presence of the additional singularity—as well as for ε = 1/2. In both cases, taking
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into account the due differences, the method is conceptually a variant of the double shooting
procedure described in the previous paragraph. For small values of ε we have to take care of
the origin and infinity, that are the only two singular points. It turns out that in each one of them
there exist two regular solutions that can provide the necessary initial conditions for starting
the numerical integration. The spectral condition is now given by the matching of function,
first, second and third derivatives in a fixed crossing point xc, so to recover the ‘classical
solution’ of the equation. This amounts to the vanishing of the following determinant:

det




y0,1(xc) y0,2(xc) y∞,1(xc) y∞,2(xc)

y
(I)
0,1(xc) y

(I)
0,2(xc) y

(I)
∞,1(xc) y

(I)
∞,2(xc)

y
(II)
0,1 (xc) y

(II)
0,2 (xc) y

(II)
∞,1(xc) y

(II)
∞,2(xc)

y
(III)
0,1 (xc) y

(III)
0,2 (xc) y

(III)
∞,1(xc) y

(III)
∞,2(xc)


= 0 (3.9)

where y0,i , y∞,i , (i = 1, 2), are the two regular solutions coming from the origin and from the
infinity respectively and the superscripts denote the order of the derivatives. As in the even
case, the two acceptable series solutions in the neighbourhood of the origin are of the form
yi(x) = Aix

ρi Si(x), where, for j > 0 and ε < 1/2,

ρ1 = −1 +
1

2(1 − 2ε)
[(1 − 2ε)2(4 − α2(4ε + 1)) − 4(−1 + 2ε)j (j + 1)]1/2

ρ2 = 1

2
[−α2(2ε + 1)2 + 4(2ε + 1)j (j + 1)]1/2.

(3.10)

The search for the asymptotic solutions is a bit more delicate. Indeed they are still of the form
yi(x) = Bi exp[−κix]xνi Ti(x), i = 1, 2, and again κ1 = κ2 = κ , with

κ = α

4
[−w(8 + α2w)]1/2 (3.11)

while the indices are

ν1 = −1 +
16 + α2w(8 + α2w)(2ε + 1)

2(4 + α2w)[−w(8 + α2w)]1/2
ν2 = ν1 − 2. (3.12)

Although an integer difference of the indices could imply solutions of different types, the
present case is the simplest one and a second non-logarithmic solution is found.

We now consider the odd ground state for ε = 1/2. We have then to discuss the
fourth-order differential equation with j = 1 in the presence of a singularity located, almost
independently of the value of w, around x � 0.001 6478. The two regular asymptotic solutions
are of the type already described and the corresponding parameters are obtained from (3.11)
and (3.12) with ε = 1/2. The second solution is again non-logarithmic. The behaviour in the
origin, however is here different. In fact we have one of the two regular solutions of the form
y1(x) = x

√
4−α2

S1(x), but the second one, due to the fact that the singularity in the origin is
irregular, must be searched in a more general form [34], and results in

y2(x) = exp

[
−4

√
α(4 + α2w)

(4 + α2w)
√

x

]
x−3/4S2(

√
x) (3.13)

where S2(
√

x) is a power series in
√

x with zeroth-order term equal to unity. Finally four
regular solutions are found in a neighbourhood of the singular point: their indices are
0, 1, 2, 49/16, but despite the integer differences all of them are non-logarithmic. These
solutions together with their first three derivatives are used to bridge the two solutions from
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the origin to the two solutions from infinity. From a numerical viewpoint, however, this is
not very simple due to the critical sensitivity of the coefficients of the differential equation
to tiny variations of the coordinate x. Indeed the ordinary integration codes present errors
too large to be accepted, so that, in order not to lose in accuracy when integrating out of the
singularity, we have chosen a mash of sufficiently close points (all of them obviously regular
with respect to the differential equations): for each point we have constructed four regular
series solutions with a number of terms sufficiently large to respect the accuracy requirements,
and we have connected all these solutions by matching functions and derivatives up to
order 3.

We finally discuss the spectral solution of the odd case with j = 0. We have already stated
that now the system decouples and gives rise to a pair of second-order differential equations.
As in the even case, only one of these equations, namely the equation coming from the (y1, y3)

subsystems, has a physical meaning. From (3.7) we easily find

d2

dx2
y(x) +

2

x

[
1 +

α

α2wx + 2α + 8x
− α

4x + α2wx + 2α
+

1

xαw + 2

]
d

dx
y(x)

+

[
α2w(α2w + 8)

16
+

α2(4ε + 1)

4x2
+

α(α2w + 4)(2ε + 1)

4x

− 8αε

(4 + α2w)x + 2α

]
y(x) = 0 (3.14)

and we see that the coefficient of the first derivative has a singularity at the point x = −2/(wα),
independent of ε. Since for the bound states we are studying w assumes negative values, the
singularity is therefore located at a finite positive value of x and must be accounted for in the
integration for any value of ε. The situation is similar to what we have already seen and may
be briefly summarized as follows: the index for the acceptable series solution in the origin is
ρ = −1 + 1

2

√
4 − α2(4ε + 1). The two constants of the asymptotic solution are the same κ as

in (3.11) and ν = ν1 as given in (3.12). In the neighbourhood of the singular point the indices
are 0, 2 and there exist two non-logarithmic solutions.

4. Discussion of the results

To begin the discussion of the results we report the values we have obtained in [27] for the
levels of the pure Coulomb interacting system. The classification scheme we used in that paper
was fit to describe the spectral terms for systems with variable mass ratio. For convenience
in comparing our levels with the corresponding values existing in the literature [11, 10] and
obtained by semi-classical expansions, we will adopt the commonly accepted classification of
the positronium levels3.

Our results for the relativistic two-body equation with pure Coulomb interaction are as
follows. For the ground states we have

State wCoulomb State wCoulomb

11s0 −0.499 995 0109 13s1 −0.499 995 0109

3 Although not necessary for the discussion, it is straightforward to recognize the following correspondence between
[27] and [11]: (+, 0, I ) → 11s0, (−, 1, I ) → 13s1, (+, 0, I I ) → 21s0, (+, 1, I ) → 23p1, (+, 1, I I ) → 21p1,

(−, 0, I ) → 23p0, (−, 1, I I ) → 23s1, (−, 2, I ) → 23p2.
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For the first excited states, the data are:

State wCoulomb State wCoulomb

21s0 −0.124 999 6884 23s1 −0.124 999 6884
21p1 −0.125 000 2427 23p1 −0.125 000 5200
23p0 −0.125 000 7974 23p2 −0.124 999 9654

As explained in appendix A, the levels accounting for the first-order perturbative effects
of the Breit terms are given by

wBreit = wCoulomb +
1

2

dw(ε)

dε

∣∣∣∣
ε=0

. (4.1)

The derivative of w in ε = 0 was calculated by computing the eigenvalues corresponding
to ε = 0.1 and ε = 0.2 and then looking for the three-point Lagrangian interpolation through
them and through (ε = 0, w = wCoulomb). The results have been checked by repeating the
same procedure for other values of ε sufficiently close to the origin and the differences are
at most of some unities in the last figure for the states s and even less for the states p. Even
if we take the values we have calculated for ε = 1/2—and reported below—to construct the
interpolation, we see that the results for the hyperfine ground levels differ only for some unities
in the ninth figure. In the following table we summarize the data we have obtained. Remark
that the calculations have been done with a number of figures sufficiently large to prevent the
rounding errors.

State wε=0.1 wε=0.2 dw/dε|ε=0

11s0 −0.500 000 8658 −0.500 002 4624 −0.798 407 7369 × 10−4

13s1 −0.499 995 5437 −0.499 995 3671 −0.887 489 6904 × 10−5

21s0 −0.125 000 5867 −0.125 000 9527 −0.116 441 3908 ×10−4

23s1 −0.124 999 9215 −0.125 000 0659 −0.277 440 1032 × 10−5

21p1 −0.125 000 3204 −0.125 000 2205 −0.166 409 1904 × 10−5

23p1 −0.125 000 7197 −0.125 000 8750 −0.221 861 1453 × 10−5

23p0 −0.125 001 2966 −0.125 001 7959 −0.499 227 1268 × 10−5

23p2 −0.125 000 0186 −0.125 000 0452 −0.664 616 5115 × 10−6

The spectral values with ε = 1/2 for 11s0 and 13s1 are the following:

State wε=1/2 State wε=1/2

11s0 −0.499 981 6915 13s1 −0.499 990 5793

The differential equations producing these last values present a singularity at finite values
of the radial coordinate. This singularity is in fact non-disturbing for the integration and one
can ‘pass through’ by imposing the matching conditions as explained in section 3. The results
however confirm the Breit idea: indeed they present a qualitatively wrong configuration, with
the singlet higher than the triplet.

Let us now compare our results with the known data. We recall the formula giving the
first terms of the semi-classical expansion for the singlets [5]:

w = − 1

2n2
+

α2

2n4

(
11

16
− n

j + 1
2

)
+ O(α4). (4.2)
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It is well known that the 13s1 level has a value

w = − 1
2 + 1

96α2 (4.3)

omitting the annihilation term, which contributes for an additional α2/2 to the singlet–triplet
splitting. From [11] we take the approximations for the n = 2 triplets obtained from [10].
The results are

w(23p0) = − 1
8 + 95

1536α2 (4.4)

and

w(23pj ) = w(23p0) + δ(j), w(21p1) = w(23p0) + δ′ (4.5)

with

δ(1) = 5
160α2, δ(2) = 9

160α2, δ′ = 1
24α2. (4.6)

Finally w(23s1) is deduced from the relation [9]

w(23s1) − w(21s0) = 1
8 (w(13s1) − w(11s0)). (4.7)

The comparison with our results is summarized in the following table:

State wnum wsemi-classical

11s0 −0.500 034 9313 − 1
2 − 21

32 α2 = −0.500 034 9462

13s1 −0.499 999 4484 − 1
2 + 1

96 α2 = −0.499 999 4453

21s0 −0.125 005 5105 − 1
8 − 53

512 α2 = −0.125 005 5123

23s1 −0.125 001 0756 − 1
8 − 31

1536 α2 = −0.125 001 0747

21p1 −0.125 001 0747 − 1
8 − 31

1536 α2 = −0.125 001 0747

23p1 −0.125 001 6293 − 1
8 − 47

1536 α2 = −0.125 001 6294

23p0 −0.125 003 2935 − 1
8 − 95

1536 α2 = −0.125 003 2935

23p2 −0.125 000 2977 − 1
8 − 43

7680 α2 = −0.125 000 2982

A couple of final comments on the results are in order. In the first place we observe that
the pure Coulomb levels calculated in the semi-classical approximation or, equivalently, using
the expansion in α differ from the levels calculated by the two-body relativistic equation by a
quantity of the same order of the approximation itself. In order to produce a concrete example
we let ε = 0 in (3.2) and use the ‘atomic variable’ z = 1

2αx. Expanding in α up to the second
order, we find

d2

dz2
y(z) +

(
w2α2

4
+ 2w +

4 + α2w

2z
+

α2

4z2

)
y(z) (4.8)

with the regular solution

y(z) = z1/2 + (1/2)
√

1 − α2
e−(1/2)

√
−w(α2w + 8)z·

1F1

(
1

2
+

√
1 − α2

2
− α2w + 4

2
√

−w(α2w + 8)
, 1 +

√
1 − α2,

√
−w(α2w + 8)z

)
.

(4.9)

From the vanishing of the first argument of the hypergeometric we get the ground level

w = 1

α3

(
2 + 2

√
1 − α2

)√
2 − 2

√
1 − α2 − 4

α2
� −1

2
− 5

32
α2 + O(α4) (4.10)
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Comparing (4.10) with our relativistic pure Coulomb result w = −0.499 995 0109, that can be
approximated as w = −1/2 + 3α2/32 + O(α4), we find a difference of about α2/4. In contrast,
when looking at the data presented in the final table, we see that the difference reduces to
less than α3/26 and becomes even more negligible for the levels with higher orbital angular
momentum.

A second observation concerns the degeneracy of the states 23s1 and 21p1 that is
predicted from the perturbative expansion and that is completely confirmed from the numerical
calculations. The existing difference of about 0.01α2 for the pure Coulomb interaction
disappears when introducing the Breit term. A similar phenomenon in the perturbative
framework had been noted in [14] with respect to the Lamb shift in the hydrogen atom,
produced by a pure relativistic Coulomb interaction and reabsorbed by the presence of the
magnetic term.

To conclude, in this paper we have presented a relativistic calculation of the hyperfine
structure of the positronium, providing the theoretical and mathematical instruments to obtain
the results. We have pursued our approach without any semi-classical approximation or
expansion in the fine structure constant: the only due perturbative treatment has been reserved
to the magnetic interaction term. Along this way, almost unexplored, we have proved some
other aside facts. In particular, we have discussed the nature and the properties of the
singularities arising in the development and have found that they bear no serious consequences
either in the integration of the wave equations, or in their spectral behaviour, but for lengthy
technical complications: this, in a sense, can be considered an indirect test of the reliability
of the approach to bound states through relativistic wave equations up to the quantum field
theoretic corrections. We have also indicated possible applications of the method, which are
now under investigation.

Appendix. A perturbative expansion

In this appendix we prove the relationships between the derivative of the spectral values with
respect to a parameter ε and the perturbative expansion in that parameter.

Consider the Hermitian operators H,Q and the sum

K(ε) = H + εQ. (A.1)

Let U(ε) be the unitary operator such that

Kd(ε) = U−1(ε)K(ε)U(ε) (A.2)

is diagonal. Denoting by a dot the derivatives with respect to ε and letting U = U(0), U−1 =
U−1(0), U̇ = U̇ (ε)|ε=0, we expand equation (A.2) to the first order in ε obtaining

Kd + εK̇d = Hd + ε([Hd,U
−1U̇ ] + U−1QU) (A.3)

where Kd = Kd(0), K̇d = K̇d(ε)|ε=0. Obviously Kd ≡ Hd ≡ U−1HU and K̇d are diagonal
matrices. Moreover the diagonal elements of [Hd,U

−1U̇ ] are vanishing, so that

(K̇d)ii = (U−1QU)ii ≡ 〈Vi,QVi〉, [Hd,U
−1U̇ ]ij + (U−1QU)ij = 0, i �= j,

(A.4)

where Vi is the ith normalized eigenvector of H. Hence

Kd(ε)ii = (Hd)ii + ε〈Vi,QVi〉 + O(ε2) (A.5)

and we recover the usual first-order correction of the perturbative expansion.
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The procedure goes over to any order. Although in our framework we do not use
anything but the first order, we want just to outline how the second order is also obtained. A
straightforward computation gives

K̈d = [Hd,U
−1Ü ] + 2U−1U̇ [U−1U̇ ,Hd ] + 2[U−1QU,U−1U̇ ] (A.6)

where, in the usual notations, K̈d = d2Kd(ε)/dε2|ε=0 and the same for Ü . Again the
diagonal part of [Hd,U

−1Ü ] vanishes. Using the second equation of (A.4) and expanding the
commutators, we find

1

2
(K̈d)ii =

∑
j �=i

(U−1U̇ )ij (U
−1QU)ji +

∑
j

(U−1QU)ij (U
−1U̇ )ji −

∑
j

(U−1U̇ )ij (U
−1QU)ji

(A.7)

or equivalently, taking carefully into account the summation ranges,

1

2
(K̈d)ii =

∑
j �=i

(U−1QU)ij (U
−1U̇ )ji . (A.8)

Observing that from the second equation of (A.4) we have

(U−1U̇ )ji = (U−1QU)ij

(Hd)ii − (Hd)jj
, j �= i (A.9)

we find the usual second-order contribution

ε2

2
(K̈d)ii = ε2

∑
j �=i

|〈Vi,QVj 〉|2
(Hd)ii − (Hd)jj

. (A.10)

It appears therefore the advantage achieved for a numerical evaluation of the perturbative
corrections in our problem as previously explained.
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